Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

V. Muthuraj,^a A. Ramu,^a A. Thamaraichelvan,^b S. Athimoolam^{c*} and S. Natarajan^c

^aDepartment of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, ^bDepartment of Chemistry, Thiagarajar College, Madurai 625 009, India, and ^cDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail: xrdsopmku@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.030 wR factor = 0.084 Data-to-parameter ratio = 9.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the title compound, $C_{12}H_{14}CINS$, the piperidine ring adopts a chair conformation and the crystal structure is stabilized by $C-H\cdots Cl$ interactions.

1-(4-Chlorothiobenzoyl)piperidine

Received 1 March 2007 Accepted 31 March 2007

Comment

The rapidly increasing recognition of aminosulfines (Cashman & Hanzlik, 1982) is due to their reactivity in forming heterocyclic systems with two or more heteroatoms. There are some indications of the biotransformation of thioamides (Chieli & Malvaldi, 1983) and also, in particular, the piperidine ring is a common unit in many biologically active natural products and therapeutic agents (Laschar & Dickner, 2000). Piperidinecontaining entities constitute important targets for pharmaceutical research (Escolano & Amat, 2006). In the present study, the new title compound was isolated during the synth-Mannich base p-chlorobenzyl(1esis of the of piperidino)thionicotinamide from piperidine, p-chlorobenzaldehyde and thionicotinamide.

In the crystal structure, the average C–N and C–C bond distances in the piperidine ring, are in good agreement with literature values (Zhao *et al.*, 2006). The C=S distance is found to be 0.011 Å shorter than the reported value (Allen *et al.*, 1987; Xu *et al.*, 2005) (Table 1). In the piperidine ring, the plane through the four C atoms (C2, C3, C5 and C6) makes an angle of 58.8 (1)° with the plane of the phenyl ring. The chair form of the piperidine ring is confirmed by the puckering analysis [$q_2 = 0.029$ (4), $\varphi_2 = 352$ (9)°, $q_3 = -0.560$ (4) Å; Cremer & Pople, 1975] (Fig. 1).

The crystal structure is stabilized by weak $C-H\cdots Cl$ interactions. This leads to a screw-related chain extending along the *b* axis of the unit cell (Fig. 2 and Table 2).

Experimental

© 2007 International Union of Crystallography All rights reserved A mixture of *p*-chlorobenzaldehyde (1.4 g, 0.02 mol), piperidine (1.8 ml, 0.02 mol) and thionicotinamide (1.8 g, 0.02 mol) in ethanol

organic papers

(20 ml) was heated gently and stirred for 8 h. The solution was then filtered, concentrated and purified by coloum chromatography (silica gel, petroleum ether–ethyl acetate $8:2\nu/\nu$). Two different compounds were obtained. One of them was the title compound (yield 2.5 g); yellow single crystals were obtained from ethyl acetate–petroleum ether at room temperature.

V = 1205.7 (3) Å³

Mo Ka radiation

 $0.25 \times 0.18 \times 0.15 \ \text{mm}$

3 standard reflections

 $\Delta \rho_{\text{max}} = 0.19 \text{ e} \text{ Å}^{-3}$

Friedel pairs Flack parameter: 0.20 (15)

 $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Absolute structure: Flack (1983), 45

frequency: 60 min

intensity decay: none

1316 independent reflections

1046 reflections with $I > 2\sigma(I)$

 $\mu = 0.46 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.004$

Z = 4

Crystal data

 $\begin{array}{l} C_{12}H_{14}\text{CINS} \\ M_r = 239.75 \\ \text{Orthorhombic, } P2_12_12_1 \\ a = 6.2251 \ (9) \ \text{\AA} \\ b = 7.7283 \ (11) \ \text{\AA} \\ c = 25.061 \ (3) \ \text{\AA} \end{array}$

Data collection

Nonius MACH3 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.866$, $T_{max} = 0.999$ (expected range = 0.809–0.934) 1333 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.084$ S = 1.091316 reflections 136 parameters H-atom parameters constrained

Table 1

Selected bond lengths (Å).

N-C7	1.327 (4)	N-C6	1.468 (4)
N-C2	1.461 (4)	C7-S	1.669 (4)

Table	2
-------	---

Hvdrogen-bond	geometry	(A. °`).

<i>D</i> -H··· <i>A</i>	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C6-H6B\cdots Cl^{i}$	0.97	2.91	3.721 (4)	142
	1 . 1			

Symmetry code: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$.

All the H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93-0.97 Å with $U_{iso}(H) = 1.2U_{eq}(parent atom)$.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXTL/PC* (Bruker, 2000); program(s) used to refine structure: *SHELXTL/PC*; molecular graphics: *SHELXTL/PC* and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL/PC*.

VM thanks Madurai Kamaraj University for University Stipendary Research Fellowship (USRF) support. SA and SN thank the Department of Science and Technology and the University Grant Commission (UGC) for financial assistance.

Figure 1

The molecular structure of the title compound (I) with the atom numbering scheme and 50% probability displacement ellipsoids.

Figure 2

Aggregation of the molecules through C-H···Cl interactions (shown as dashed lines).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1–19.
- Bruker (2000). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cashman, J. R. & Hanzlik, R. P. (1982). J. Org. Chem. 47, 4645-4650.
- Chieli, E. & Malvaldi, G. (1983). Toxicol. Lett. 18, 147-152.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
- Escolano, C. & Amat, M. (2006). Chem. Eur. J. 12, 8198-8207.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg. Germany.
- Laschar, S. & Dickner, T. (2000). Synthesis, pp. 1781-1813.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., van de Towler, M. & Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Xu, L.-Z., Li, W.-H., Song, H.-B., Li, K. & Yu, G.-P. (2005). Acta Cryst. E61, 0130–0131.
- Zhao, J.-Z., Bao, L.-L., Fan, Z.-J., Song, H.-B. & Liu, X.-F. (2006). Acta Cryst. E62, 0628–0629.